×L'Editorialjustice régions Dossiers Compétences & RH Société Brèves International Brèves internationales Courrier des Lecteurs LE CERCLE DES EXPERTS Documents Lois à polémiques Docs de L'Economiste prix-de-la-recherche Prix de L'Economiste Perspective 7,7 Milliards by SparkNews Earth Beats Solutions & Co Impact Journalism Day cop22Spécial Cop22 Communication Financière

Tribune

Enjeux de la création de valeur à partir des données

Par Taïeb DEBBAGH - Mohammed CHITAOUY - - | Edition N°:5781 Le 12/06/2020
Partager

Dans ce contexte de déconfinement et de recherche de leviers pour la relance des activités économiques, les technologies de l’information ont été retenues pour en être un des axes majeurs. Et les organisations doivent prendre conscience qu’elles ont intérêt à considérer la «Data» comme un actif au même titre que leurs autres actifs stratégiques. En effet, les données ne sont plus seulement la résultante des processus de l’Organisation mais elles ont de multiples sources issues de ses différents écosystèmes (clients, fournisseurs…) et en provenance d’une multitude de moyens de captation (Big data, objets connectés-IOT, réseaux sociaux, Open data…).

taieb-debbagh-et-mohammed-chitaouy-081.jpg

La gouvernance des données est devenue encore plus cruciale du fait notamment de difficultés majeures rencontrées:
• Incohérence des indicateurs et d’importants efforts d’ajustements des données pour le reporting et les prises de décision;
• Important délai pour la création et le partage des données communes: client, fournisseur, employé…, au détriment du traitement au niveau des processus «Métier»;
• Qualité des données insuffisantes ou manquantes pour notamment le recours à des techniques avancées d’analyse, telle que l’Intelligence artificielle…;
• Risque de non-conformité: sécurité des informations sensibles, protection des données personnelles…
De plus, la transformation digitale, par l’introduction de technologies émergentes (ML-Machine Learning), requiert des données de qualité, correctement étiquetées et en quantité suffisante, pour l’apprentissage et le déploiement des algorithmes qui sont au cœur des applications intelligentes.
D’après le cabinet Cognilytica, l’expérience montre que les tâches de préparation des données représentent souvent 80% de l’effort total ne laissant que peu de temps à l’analyse.

Quatre types d’enjeux

Les retours d’expérience des projets BI font ressortir les principaux enjeux de création de valeur à partir des données. Il s’agit de quatre types d’enjeux liés à l’intégration des données, l’utilisation de l’information, la littératie «Analytic» et la rétroaction sur les processus «Métier». Ces enjeux sont positionnés sur la chaîne «Donnée-Information-Connaissance-Action» (voir encadré); et ce, dans le contexte d’une organisation «Data driven».
Les enjeux liés à l’intégration des données portent sur le flux de transformation de la «Donnée» en «Information»: acquisition incomplète ou en retard, qualité non satisfaisante…
Les enjeu x liés à l’utilisation de l’information portent sur le flux de transformation de «l’Information» en «Connaissance»: accès limité à l’information par manque de procédures sur la sécurité des données, faible adoption des solutions BI/Analytics…
Les enjeux liés à la littératie «Analytics» portent sur le flux de transformation de la «Connaissance» en «Action» (Décision): insuffisance d’une culture de décision basée sur les «faits», manque de compétences analytiques (interprétation adéquate des résultats, respect des exigences d’explicabilité des algorithmes)…
Les enjeux liés à la rétroaction sur les processus portent sur le flux de transformation de l’«Action» en «Valeur» via  les processus «Métier»: génération de valeur non identifiée ou non suivie, interopérabilité insuffisante entre systèmes…

Convergence de la gouvernance des données
et de la BI augmentée

Depuis bien longtemps, l’importance de la gouvernance des données (actif informationnel) est souvent soulignée mais sans succès lors de sa mise en place. Un des freins majeurs est «le commen» mettre en œuvre la gouvernance des données et surtout par où commencer?
Issue des retours d’expérience, une approche pragmatique et pertinente est de plus en plus considérée: Initier la gouvernance des données par l’entremise de la BI (sur des «business cases» ciblées).
En effet, les fonctionnalités BI peuvent être utilisées pour caractériser les données (récupération des dictionnaires des données sources, profilage des données…) et faire ressortir un premier référentiel des données ainsi que les problèmes portant notamment sur leur qualité.
En effet, cette première utilisation des données va être l’occasion de sensibiliser les départements «Métiers» sur l’importance d’une donnée de qualité et être un déclencheur de la mise en place d’une gouvernance de données (progressive et non-invasive) à l’échelle de l’Organisation (cadre de référence, processus, rôles, outils et mesures).
L’utilisation des techniques avancées (IA-ML) offertes par la nouvelle génération BI (Augmented BI) ne fait que renforcer la pertinence de cette approche. La BI augmentée offre (via des algorithmes issus de l’apprentissage approfondi) des analyses automatisées pour l’identification des caractéristiques des données sources ainsi que des pistes de leur qualification. Cette approche vient d’être confirmée par le Cabinet Gartner dans un récent rapport («Predicts 2020: Analytics and Business Intelligence Strategy» publié le 3 janvier 2020):
«D’ici 2023, 90% des 500 premières entreprises mondiales auront fait converger la gouvernance du BI/Analytics à des initiatives plus larges de gouvernance des données et du BI/Analytics (nouvelle génération incluant l’IA)». En effet, les deux initiatives «Gouvernance des données» et «BI» n’ont-elles pas le même (ultime) objectif qui est de s’assurer d’extraire la valeur à partir des données.
En conclusion, les retours d’expérience montrent que les initiatives de création de valeur à partir des données (Gouvernance des données ou BI ou IA) motivées seulement par l’introduction de standards (meilleures pratiques) ou de plateformes technologiques ont peu de chances d’aboutir ou de créer une valeur significative pour les processus «Métier».
De ce fait, la convergence des initiatives de «Gouvernance des données» et de la «BI Augmentée» (boucle complète – Donnée-Valeur) devra permettre d’adresser les enjeux de création de valeur à partir des données tout en constituant une fondation de données (gouvernées) avec la qualité requise; et ce, tant pour les besoins BI traditionnels que pour l’introduction des technologies émergentes dans le cadre de la transformation digitale des Organisations. Il va sans dire que toutes ces initiatives devront toujours s’inscrire dans le cadre d’amélioration continue requises au niveau des processus «Métier»; et ce, par l’identification de cas d’usages visant la création de valeur et la prise en charge de la boucle complète DICA (Donnée-Information-Connaissance-Action).

chaine-dica-081.jpg

La chaîne «Donnée-Information-Connaissance-Action» est constituée des quatre chaïnons suivants:
• Donnée: les données sont une collection brute d’attributs (caractéristiques) et de «faits» (nombres) issues tant des sources internes qu’externes
• Information: lorsque les données sont organisées, structurées et raffinées dans un contexte précis, elles deviennent de l’information;
• Connaissance: c’est uniquement quand cette information est traitée – analysée et synthétisée dans l’esprit d’un individu (ou via une application) – qu’elle peut être considérée comme connaissance;
• Action: la valeur ne peut être créée que lorsque cette connaissance est transformée en action (via une prise de décision): rétroaction sur une des composantes des processus «Métier» ou des écosystèmes.

Pour mieux comprendre

- La «Business Intelligence (BI)» ou informatique décisionnelle, désigne l’ensemble des méthodes, processus et technologies permettant aux Organisations d’analyser les données en vue d’en extraire l’intelligence. (Définition du Gartner adaptée).
- Gouvernance des données (et de l’information) désigne la spécification des droits de décision et un cadre de responsabilisation pour assurer le comportement approprié dans l’évaluation, la création, la consommation et le contrôle des données et des analyses; et ce, dans le but d’en extraire la valeur pour les processus Métier. (Définition du Gartner adaptée).
- Machine Learning (branche de l’IA) permet aux ordinateurs d’apprendre et d’agir sans avoir été programmés de façon explicite. Cette technologie recherche des patterns au sein des données pour diriger les actions d’un programme d’IA, en prenant en compte le contexte (www.lebigdata.fr).

                                                                           

 

 

 

  • SUIVEZ-NOUS:

  1. CONTACT

    +212 522 95 36 00
    abonnement@leconomiste.com
    mareaction@leconomiste.com
    redaction@leconomiste.com
    publicite@leconomiste.com
    communication@leconomiste.com

    70, Bd Al Massira Khadra
    Casablanca, Maroc

  • Assabah
  • Atlantic Radio
  • Eco-Medias
  • Ecoprint
  • Esjc